organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

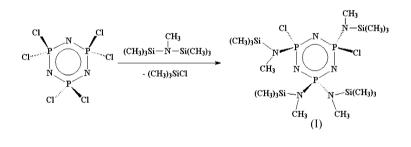
Radka Voznicová,^a Jan Taraba,^a* Milan Alberti^b and Jiři Příhoda^a

^aDepartment of Inorganic Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, and ^bLaboratory of Plasma Physics and Plasma Sources, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic

Correspondence e-mail: taraba@chemi.muni.cz

Key indicators

Single-crystal X-ray study T = 120 KMean $\sigma(\text{N}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.038 wR factor = 0.097 Data-to-parameter ratio = 17.2


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

trans-2,6-Dichloro-2,4,4,6-tetrakis[methyl-(trimethylsilyl)amino]-1,3,5,2 λ^5 ,4 λ^5 ,6 λ^5 triazatriphosphorine

The title tetrasubstituted phosphazene, $C_{16}H_{48}Cl_2N_7P_3Si_4$, is formed by the reaction of $P_3N_3Cl_6$ with heptamethyldisilazane, HpMDSA. The compound is the first *trans* non-geminal tetrasubstituted derivative of this class of compounds to be structurally characterized. The molecule lies on a crystallographic twofold rotation axis.

Comment

Phosphazenes date back to the late 20th century (Allcock, 1972; Allen, 1991). Most studies have focused on nucleophilic substitutions of hexahalogeno-*cyclo*-triphosphazene $P_3N_3X_6$ (X = F, Cl, Br) (Allcock, 1987, 1972, 2003; Allen, 1987, 1991; Gleria & De Jaeger, 2002). Little attention has been paid to reactions of cyclic phosphazenes with silylated amines (Mattogno & Tarli, 1964, Mattogno *et al.*, 1965; Fields & Allen, 1974) although Fields & Allen (1974) prepared $P_3N_3Cl_4[NHSi(CH_3)_3]_2$, and its crystal structure was determined by Allen *et al.* (1988).

Many crystal structures of amido derivatives of chlorophosphazenes have been reported (e.g. Polder & Wagner, 1976; Bartlett et al., 2006; Ahmed & Gabe, 1975, Ahmed & Fortier, 1980). Compound (I) is the first trans non-geminal tetrasubstituted derivative of this class of compounds to be structurally characterized (Fig. 1). The molecule lies on a crystallographic twofold rotation axis. A comparison of corresponding bond lengths with literature data (Allen et al., 1988; Ahmed & Gabe, 1975, Ahmed & Fortier, 1980) shows that there is no significant difference in the length of either the exocyclic P-Cl bond or the P-N(Me) bond. However, a remarkable deviation was found in the P-N bond distances of the P_3N_3 ring. The P-N lengths in compound (I) are in the range 1.591 (2)–1.6168 (18) Å, compared with literature values of 1.574-1.586 Å (Allen et al., 1988; Ahmed & Gabe, 1975, Ahmed & Fortier, 1980). A significant elongation was also found for N-C bonds [1.484 (3)-1.491 (3) Å in (I) compared to 1.456–1.473 Å in *trans*-P₃N₃Cl₄[N(CH₃)₂]₂ (Ahmed & Fortier, 1980)]. The P1–N2–P1ⁱ [symmetry code:

Received 7 December 2006 Accepted 19 December 2006

0592 Voznicová et al. • C₁₆H₄₈Cl₂N₇P₃Si₄

© 2007 International Union of Crystallography

All rights reserved

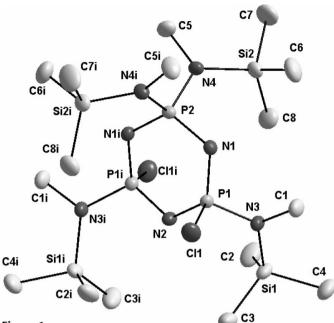


Figure 1

The molecular structure of (I). Displacement ellipsoids represent 50% probability levels. All H atoms have been omitted for clarity. [Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.]

(i) -x, y, $-z + \frac{1}{2}$ and N1-P1-N2 angles of the phosphazene ring are comparable to those of similar phosphazene amidoderivatives (Allen et al., 1988; Ahmed & Gabe, 1975, Ahmed & Fortier, 1980) but there are some differences in the values of N1-P2-N1ⁱ and P1-N1-P2 angles. The former angle increased to 115.28 (14)° (cf 111.57°; Allen et al., 1988) while the latter decreased to $121.96 (11)^{\circ}$ (124.80°; Allen et al., 1988). The P₃N₃ ring is slightly distorted with atoms N1 and N1ⁱ atoms deviating from the P1,N2,P1ⁱ,P2 plane by 0.2181 (18) Å. The angle between the P1,N2,P1ⁱ,P2 ring and N4,P2,N4ⁱ is 88.12 (4)° (*cf* 87.14°; Allen *et al.*, 1988) while the angle between the ring plane P1,P1ⁱ,P2 and planes formed by atoms Cl1,P1,N3 or Cl1ⁱ,P1ⁱ,N3ⁱ decreased to 81.17 (3)° (85.43–89.60°; Ahmed & Gabe, 1975, Ahmed & Fortier, 1980). This deviation can be attributed to the presence of two bulky N(CH₃)Si(CH₃)₃ groups on P2.

No important intermolecular interactions were found in the crystal structure of (I). The molecules of (I) form a system of two coplanar [011] planes. The appropriate description of the structure motif is $[ABAB]_{\infty}$.

Experimental

Compound (I) was prepared by reaction of $P_3N_3Cl_6$ with heptamethyldisilazane in acetonitrile (see Scheme). $P_3N_3Cl_6$ (0,201 g, 0,6 mmol) dissolved in acetonitrile (5 cm³) and HpMDSA (0,416 g, 2,4 mmol) were placed into a Schlenk vessel equipped with a screw cap. The reaction mixture was heated on an oil bath at 399–405 K for 48 h. After cooling, the solvent and resulting trimethylchlorosilane were completely evaporated and the remaining solid was again dissolved in acetonitrile. This solution was stored at 248 K for several weeks. Crystals of (I) for suitable X-ray analysis were removed from the solution under a dry nitrogen atmosphere.

Crystal data

-)	
$C_{16}H_{48}Cl_2N_7P_3Si_4$ $M_r = 614.78$ Monoclinic, C2/c a = 17.470 (3) Å b = 11.360 (2) Å c = 17.270 (3) Å $\beta = 101.21$ (3)° V = 3362.0 (10) Å ³	Z = 4 $D_x = 1.215 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.50 \text{ mm}^{-1}$ T = 120 (2) K Prism, white $0.25 \times 0.20 \times 0.20 \text{ mm}$
Data collection Kuma KM-4 CCD diffractometer ω scans Absorption correction: none 13131 measured reflections	2829 independent reflections 2569 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 25.0^{\circ}$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.097$ S = 1.04 2620 reflections 154 parameters	$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.049P)^2 \\ &+ 7.9146P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.001 \\ \Delta\rho_{\text{max}} &= 0.54 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.34 \text{ e } \text{ Å}^{-3} \end{split}$

Table 1

Selected geometric parameters (Å, °).

H-atom parameters constrained

	•	·	
Cl1-P1	2.0730 (9)	N3-C1	1.491 (3)
P1-N1	1.591 (2)	$P2-N1^{i}$	1.6168 (18)
P1-N2	1.6010 (15)	P2-N4	1.6645 (18)
P1-N3	1.6491 (19)	P2-N4 ⁱ	1.6645 (18)
N1-P2	1.6168 (18)	N4-C5	1.484 (3)
N2-P1 ⁱ	1.6010 (15)		
N1-P1-N2	118.79 (11)	P1-N2-P1 ⁱ	119.36 (17)
N3-P1-Cl1	103.57 (8)	$N1 - P2 - N1^{i}$	115.28 (14)
P1-N1-P2	121.96 (11)	$N4-P2-N4^{i}$	107.19 (14)

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.

H atoms were positioned geometrically (C-H = 0.98Å) and refined as riding with $U_{iso}(H) = 1.5U_{eq}(C)$.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2003); cell refinement: *KM-4 Software* (Kuma Diffraction, 2006); data reduction: *KM-4 Software*; program(s) used to solve structure: *SHELXTL* (Bruker, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors express their gratitude to the Czech Grant Agency (grant Nos. 203/02/0436 and 203/05/P104) and the Ministry of Education (grant No. MSM0021622411).

References

- Ahmed, F. R. & Fortier, S. (1980). Acta Cryst. B36, 1456-1460.
- Ahmed, F. R. & Gabe, E. J. (1975). Acta Cryst. B31, 1028–1032.
- Allcock, H. R. (1972). Chem. Rev., 72, 315–356.
- Allcock, H. R. (1987). Polyhedron, 6, 119–157.
- Allcock, H. R. (2003). *Chemistry and Applications of Polyphosphazenes*. Hoboken and New York: Wiley Interscience.
- Allen, C. W. (1987). *The Chemistry of Inorganic Homo- and Heterocycles*, edited by I. Haiduc and D. B. Sowerby. London: Academic Press.

Allen, C. W. (1991). Chem. Rev., 91, 119–135. Allen, C. W., Brown, D. E., Cordes, A. W. & Craig, S. L. (1988). J. Chem. Soc.

Allen, C. W., Brown, D. E., Cordes, A. W. & Craig, S. L. (1988). J. Chem. Soc. Dalton Trans. pp. 1405–1407.

- Bartlett, S. W., Coles, S. J., Davies, D. B., Hursthouse, M. B., İbişogˇlu, H., Kiliç, A., Shaw, R. A. & Ün, İ. (2006). *Acta Cryst.* B62, 321–329.
- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fields, A. T. & Allen, C. W. (1974). J. Inorg. Nucl. Chem., 36, 1929-1932.
- Gleria, M. & De Jaeger, R. (2002). *Phosphazenes, A Worldwide Insight*. New York: Nova Science Publishers, Inc.
- Kuma Diffraction (2006). KM-4 Software. Version 1.71. Kuma Diffraction, Wrocław, Poland.
- Mattogno, G. & Tarli, F. (1964). Ric. Scient. Parte 2: Sez. A, 4, 487-489.
- Mattogno, G., Tarli, F. & Monaci, A. (1965). Ann. Chim., **55**, 599–603. Oxford Diffraction (2003). CrysAlis CCD. Version 1.170. Oxford Diffraction
- Ltd., Abingdon, Oxfordshire, England. Polder, W. & Wagner, A. J. (1976). Cryst. Struct. Commun. 5, 253–257.